102 research outputs found

    New challenges in municipal broadband network management : from vertical integration to wholesale-retail model

    Get PDF
    Over the past years, municipal networks deploying Fiber-to-the-Home (FttH) technologies have increasingly been implemented in Europe. In order to achieve compatibility with the European Union (EU) legal and regulatory framework, a variety of public and private partnership (PPP) models have been developed throughout Europe aimed contributing expertise, finance, etc. to their growth. Recently, the debate has focused on the different industry structure that can foster the growth of municipal networks by moving from sole-supplier environment to a wholesale-retail split model. In undertaking a techno-economic analysis, the paper examines the viability of a wholesale-retail split model. It uses data from the implementation of an FttH network for a small town in the Netherlands. The paper demonstrates that the advantages in moving towards a wholesale retail split model and characterizes the neccessity to define open access conditions for these networks

    Optical variability of the BL Lacertae object GC 0109+224. Multiband behaviour and time scales from a 7-years monitoring campaign

    Get PDF
    We present the most continuous data base of optical BVRcIcBVR_{c}I_{c} observations ever published on the BL Lacertae object GC 0109+224, collected mainly by the robotic telescope of the Perugia University Observatory in the period November 1994-February 2002. These observations have been complemented by data from the Torino Observatory, collected in the period July 1995-January 1999, and Mt. Maidanak Observatory (December 2000). GC 0109+224 showed rapid optical variations and six major outbursts were observed at the beginning and end of 1996, in fall 1998, at the beginning and at the end of 2000, and at the beginning of 2002. Fast and large-amplitude drops characterized its flux behaviour. The RcR_c magnitude ranged from 13.3 (16.16 mJy) to 16.46 (0.8 mJy), with a mean value of 14.9 (3.38 mJy). In the periods where we collected multi-filter observations, we analyzed colour and spectral indexes, and the variability patterns during some flares. The long-term behaviour seems approximatively achromatic, but during some isolated outbursts we found evidence of the typical loop-like hysteresis behaviour, suggesting that rapid optical variability is dominated by non-thermal cooling of a single emitting particle population. We performed also a statistical analysis of the data, through the discrete correlation function (DCF), the structure function (SF), and the Lomb-Scargle periodogram, to identify characteristic times scales, from days to months, in the light curves, and to quantify the mode of variability. We also include the reconstruction of the historical light curve and a photometric calibration of comparison stars, to favour further extensive optical monitoring of this interesting blazar.Comment: 13 pages, 11 PS figures, 1 EPS figure, 3 tables, accepted by Astronomy and Astrophysics. Uses A&A documentclass aa.cls, and the package graphicx.st

    Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures

    Full text link
    This Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period provided that all the terms of the licence are adhered toThe effect of the oxidation of gallium nanoparticles (Ga NPs) on their plasmonic properties is investigated. Discrete dipole approximation has been used to study the wavelength of the out-of-plane localized surface plasmon resonance in hemispherical Ga NPs, deposited on silicon substrates, with oxide shell (Ga2O3) of different thickness. Thermal oxidation treatments, varying temperature and time, were carried out in order to increase experimentally the Ga2O3 shell thickness in the NPs. The optical, structural and chemical properties of the oxidized NPs have been studied by spectroscopic ellipsometry, scanning electron microscopy, grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy. A clear redshift of the peak wavelength is observed, barely affecting the intensity of the plasmon resonance. A controllable increase of the Ga2O3 thickness as a consequence of the thermal annealing is achieved. In addition, simulations together with ellipsometry results have been used to determine the oxidation rate, whose kinetics is governed by a logarithmic dependence. These results support the tunable properties of the plasmon resonance wavelength in Ga NPs by thermal oxidation at low temperatures without significant reduction of the plasmon resonance intensityThis research is supported by the MINECO (CTQ2014-53334-C2-2-R and MAT2016-80394-R) and Comunidad de Madrid (NANOAVANSENS ref. S2013/MIT-3029) projects. ARC acknowledges Ramón y Cajal program (under contract number RYC-2015-18047). FN acknowledges support from Marie Sklodowska-Curie grant agreement No 641899 from the European Union’s Horizon 2020 research and innovation programm

    Glutamate-mediated blood-brain barrier opening. implications for neuroprotection and drug delivery

    Get PDF
    The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT: In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders

    The role of the oxide shell in the chemical functionalization of plasmonic gallium nanoparticles

    Full text link
    S. Catalán-Gómez, M. Briones, A. Redondo-Cubero, F. J. Palomares, F. Nucciarelli, E. Lorenzo, J. L. Pau, "The role of the oxide shell in the chemical functionalization of plasmonic gallium nanoparticles", SPIE Optics + Optoelectronics Proc. SPIE 10231 (16 May 2017); doi: 10.1117/12.2265665; Copyright 2017 Society of Photo‑Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Plasmonic Ga nanoparticles (NPs) were thermally oxidized at low temperature in order to increase the native Ga 2 O 3 shell thickness and to improve their stability during the chemical functionalization. The optical, structural and chemical properties of the oxidized NPs have been studied by spectroscopic ellipsometry, scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. A clear redshift of the peak wavelength is observed with the increasing annealing time due to the Ga 2 O 3 thickness increase, and barely affecting the intensity of the plasmon resonance. This oxide layer enhances the stability of the NPs upon immersion in ethanol or water. The surface sensitivity properties of the as-grown and oxidized NPs were investigated by linking a thiol group from 6-Mercapto-1-hexanol through immersion. Ellipsometric spectra at the reversal polarization handedness (RPH) condition are in agreement with the Langmuir absorption model, indicating the formation of a thiol monolayer on the NPs

    Size-selective breaking of the core-shell structure of gallium nanoparticles

    Full text link
    This Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period provided that all the terms of the licence are adhered toCore-shell gallium nanoparticles (Ga NPs) have recently been proposed as an ultraviolet plasmonic material for different applications but only at room temperature. Here, the thermal stability as a function of the size of the NPs is reported over a wide range of temperatures. We analyze the chemical and structural properties of the oxide shell by x-ray photoelectron spectroscopy and atomic force microscopy. We demonstrate the inverse dependence of the shell breaking temperature with the size of the NPs. Spectroscopic ellipsometry is used for tracking the rupture and its mechanism is systematically investigated by scanning electron microscopy, grazing incidence x-ray diffraction and cathodoluminescence. Taking advantage of the thermal stability of the NPs, we perform complete oxidations that lead to homogenous gallium oxide NPs. Thus, this study set the physical limits of Ga NPs to last at high temperatures, and opens up the possibility to achieve totally oxidized NPs while keeping their sphericityThe research is supported by the MINECO (CTQ2014-53334-C2-2-R, CTQ2017-84309-C2-2-R, MAT2016-80394-R, MAT 2015-65274-R/FEDER and MAT2017-85089-C2-1-R) and Comunidad de Madrid (NANOAVANSENS ref. S2013/MIT-3029) projects. ARC acknowledges RamĂłn y Cajal program (under contract number RYC-2015-18047). FN acknowledges support from Marie Sklodowska-Curie grant agreement No. 641899 from the European UnionÂŽs Horizon 2020 research and innovation programm

    Day-Scale Variability of 3C 279 and Searches for Correlations in Gamma-Ray, X-Ray, and Optical Bands

    Get PDF
    Light curves of 3C 279 are presented in optical (R-band), X-rays (RXTE/PCA), and gamma rays (CGRO/EGRET) for 1999 Jan-Feb and 2000 Jan-Mar. During both of those epochs the gamma-ray levels were high, and all three observed bands demonstrated substantial variation, on time scales as short as one day. Correlation analyses provided no consistent pattern, although a rather significant optical/gamma-ray correlation was seen in 1999, with a gamma-ray lag of ~2.5 days, and there are other suggestions of correlations in the light curves. For comparison, correlation analysis is also presented for the gamma-ray and X-ray light curves during the large gamma ray flare in 1996 Feb and the two gamma-bright weeks leading up to it; the correlation at that time was strong, with a gamma-ray/X-ray offset of no more than 1 day.Comment: 20 pages, including 7 figures; accepted by The Astrophysical Journa
    • 

    corecore